

DIMVA 2016
Donostia-San Sebastián

Comprehensive Analysis and Detection of Flash-based Malware

Christian Wressnegger, Fabian Yamaguchi,
Daniel Arp, and Konrad Rieck

Comprehensive Analysis and Detection of Flash-based Malware | Page 2 / 19

Malware

◾ Malicious software (Malware)
◾ Lasting problem of computer security
◾ Omnipresence of Trojans, Bots, Adware, …
◾ Increase of targeted attacks using Malware

◾ Flash-based malware
◾ Malware targeting the Adobe Flash platform
◾ Drive-by-Downloads, malicious redirects, exploits, ...

Comprehensive Analysis and Detection of Flash-based Malware | Page 3 / 19

Adobe Flash

◾ Flash is dead!
◾ Deployed on 500 million devices across different platforms
◾ Used on 25% of the top 1,000 Alexa web sites

◾ Dynamic and multimedia content on web pages
◾ Advertisement, video streaming, gaming, …
◾ 20 years of deployment
◾ Powerful scripting language: ActionScript

Comprehensive Analysis and Detection of Flash-based Malware | Page 4 / 19

Adobe Flash Vulnerabilities

◾ Increasing number of CVEs
◾ About 550 different vulnerabilities in total
◾ Until 2015: 167 new vulnerabilities (80% code execution)

 Disclaimer! Effective August 2015

Comprehensive Analysis and Detection of Flash-based Malware | Page 5 / 19

Adobe Flash Vulnerabilities

◾ Increasing number of CVEs
◾ About 840 different vulnerabilities in total
◾ Until 2015: 167 new vulnerabilities (80% code execution)

 314 new vulnerabilities (85% code execution)

Comprehensive Analysis and Detection of Flash-based Malware | Page 6 / 19

Attack Vectors and Scenarios

Concrete attacks may fall into more than one of these categories

1. Structural Exploits against the Flash Player
◾ Vulnerabilities in the file format parser

2. Malicious ActionScript code
◾ Launching or preparing exploits (Obfuscation, heap-spraying, ...)

3. Environment fingerprinting
◾ Selecting targets based on interpreter or OS information

Comprehensive Analysis and Detection of Flash-based Malware | Page 7 / 19

Obfuscation

◾ Staged execution
◾ Dynamic code-loading in form of another animation

loadMovie (ActionScript 2), Loader object (ActionScript 3)
◾ Layered encryption/ polymorphism

Runtime-packers (secureSWF, DoSWF)

◾ Source-code Obfuscation
◾ Variable substitution, string assembly, dead code, etc.

◾ Probing the execution environment
◾ Triggering a malware's payload on specific systems only

Comprehensive Analysis and Detection of Flash-based Malware | Page 8 / 19

◾ Comprehensive analysis of Flash animations
Support for all versions of ActionScript and Adobe Flash platforms
◾ Structural Analysis (static)
◾ Guided code-execution (dynamic)

◾ Learning-based detection of Flash-based malware
◾ Detects 90–95% of malicious Flash files at 0.1% and 1.0% FPs

– Significantly outperforms related approaches
– Best learning-based detector for Flash-based Malware

◾ No need for manually constructed detection rules

Comprehensive Analysis and Detection of Flash-based Malware | Page 9 / 19

Structural Analysis

◾ Flash animations are composed out of “tags”
◾ Containers to store code, animation specs and data

(audio, video, images, fonts, etc.)
◾ Future versions may extend on the number of tags
◾ Possibly occurring nested (DefineShape, ...)

◾ Offering a huge attack surface
◾ Many exploits rely on a specific (sequences of) tag
◾ Memory corruption exploits such as CVE-2007-0071

Comprehensive Analysis and Detection of Flash-based Malware | Page 10 / 19

Structure Reports

◾ Exemplary report for a LadyBoyle sample using CVE-2015-323

◾ More compact:

 69 FileAttributes
 77 Metadata
 9 SetBackgroundColor
 2 DefineShape
 39 DefineSprite
 26 PlaceObject2
 86 DefineSceneAndFrameLabelData
 43 FrameLabel
 87 DefineBinaryData // Payload
 87 DefineBinaryData // Payload
 82 DoABC // ActionScript 3
 76 SymbolClass
 1 ShowFrame

69 77 9 2 [39 26] 86 43 87 87 82 76 1

md5: cac794adea27aa54f2e5ac3151050845

Comprehensive Analysis and Detection of Flash-based Malware | Page 11 / 19

Analyzing Code

◾ Dynamic code analysis
◾ Single execution “as-is” is not sufficient
◾ Covering all execution paths is not feasible
◾ Heuristics needed!

◾ Previous approaches, e.g.,
◾ Determine which paths to execute based on external input

(“Exploring Multiple Execution Paths for Malware Analysis“, Moser et al.)
◾ Multi-execution of branches along the intended path

(“Rozzle: De-cloaking Internet Malware“, Kolbitsch et al.)

Comprehensive Analysis and Detection of Flash-based Malware | Page 12 / 19

Guided Code-Execution

◾ Gordon: Guide the interpreter towards indicative code regions
◾ Branches that contains indicative functions

(loadMovie, loadBytes, ByteArray, ...)
◾ Paths with many instructions

◾ Two-step procedure
◾ Determine Control-flow statically
◾ Use CFG to guide the analyzer

– Multiple runs possible
– Force Execution at environment sensitive conditions

14

3

2

2

Run #1:
Loading of

code
Run #2:

Best code
coverage

3 6

4

5 12

9

15

3

9

?loadMovie

Comprehensive Analysis and Detection of Flash-based Malware | Page 13 / 19

Execution Reports

◾ Excerpt of a report for a sample using CVE-2015-323

◾ For automatic processing reports meta data is omitted

R1 973: pushString "fla"
R1 975: pushString "sh.uti"
R1 977: add "fla" + "sh.uti"
R1 978: pushString "ls.Byt"
R1 980: add "flash.uti" + "ls.Byt"
R1 981: pushString "eArray"
R1 983: add "flash.utils.Byt" + "eArray"
R1 984: callProperty [ns:flash.utils] getDefinitionByName 1
R1 > Looking for definition of
R1 > [ns:flash.utils] ByteArray
R1 > Getting definition for
R1 > [ns:flash.utils] ByteArray
R1 987: getLex: [ns:] Class

md5: 4f293f0bda8f851525f28466882125b7

Comprehensive Analysis and Detection of Flash-based Malware | Page 14 / 19

Learning-based Detection

◾ Preprocessing of reports
◾ Structure reports: cf. compact representation
◾ Execution reports: Instruction names and parameters only

– Parameters are replaced with their respective type

◾ n-gram models of structure and execution reports
◾ Observe occurrences of token n-grams
◾ No need for manually constructed detection rules

(instruction counts, call frequencies, etc.)

◾ Classification using Support Vector Machines (SVMs)

Comprehensive Analysis and Detection of Flash-based Malware | Page 15 / 19

Evaluation

◾ Datasets
◾ 26,600 Flash Animations collected over 12 weeks
◾ 1,923 malicious and 24,671 benign samples

◾ How well are we able to detect Flash-based malware?
◾ Comparison to the state-of-the-art methods

◾ What's all the fuss about two different analyses?
◾ Wouldn't be one of them enough?

Comprehensive Analysis and Detection of Flash-based Malware | Page 16 / 19

Experimental Setting

◾ Temporal split of the data
◾ Weeks 1-6 for training, weeks 7-9 for validation, and

the remainder, weeks 10-12 for testing
◾ All test data has been collected after training

◾ Related approaches
◾ FlashDetect (T. van Overveldt et al, RAID 2012)

– Adjusted to 1% false-positives
– Not supported version have been excluded (version 8 and below)

◾ Virus scanners listed at VirusTotal

Comprehensive Analysis and Detection of Flash-based Malware | Page 17 / 19

0.0

0.2

0.4

0.6

0.8

1.0

D
et

ec
tio

n
ra

te

Comparative Evaluation

◾ Gordon is on a par with tradition approaches
◾ No manual effort needed, though

FlashDetect: T. van Overveldt et al, RAID 2012

95.2%
90.0%

93.5%

25.6%

0.1%
1.0%

82.3%

Comprehensive Analysis and Detection of Flash-based Malware | Page 18 / 19

Combined Detection Performance

◾ Gordon benefits from two orthogonal analyses
◾ Individual representations only detect 60–65% at 0.1% FPs

0.000 0.005 0.010 0.015 0.020

False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

D
e

te
ct

io
n

 r
at

e

90%
95%

Gordon

Guided execution

Structural analysis

Comprehensive Analysis and Detection of Flash-based Malware | Page 19 / 19

Summary

◾ Comprehensive Analysis of Flash-based malware
◾ Structural analysis
◾ Guided code-execution

– Directed analysis of indicative code regions

◾ Effective Detection of a large variaty of Flash-based malware
◾ High detection rate: 90–95% of malicious samples

– Low false-positive rates
– Best learning-based detector for Flash-based Malware

◾ Can be used to bootstrap traditional methods

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

