
Detile: Fine-Grained Information-Leak
Detection in Script Engines

Ruhr-Universität Bochum
Horst Görtz Institute for IT-Security

Bochum, Germany

Robert Gawlik, Philipp Koppe, Benjamin Kollenda,
Andre Pawlowski, Behrad Garmany, Thorsten Holz

Introduction

DIMVA 2016

Introduction

• Web browsers are prone to memory corruption
 vulnerabilities

• Widely deployed exploit mitigations: DEP and ASLR

• Attackers ultimate goal: Execute code of choice via
 control-flow hijacking

→ Knowledge about memory layout is necessary to
bypass ASLR (information leak or memory disclosure)

 Afterwards, code reuse can be conducted

DIMVA 2016

Introduction

Information leaks in-the-wild, e.g., CVE-2012-0769 [1]:

DIMVA 2016

Introduction

Information leaks in-the-wild, e.g., CVE-2012-0769 [1]:

Forbidden information of native memory
in script context

DIMVA 2016

Introduction

Information leaks in academia:

• Defense: Fine-Grained ASLR [2]
→ Bypass: Just-In-Time Code Reuse [3]

• Defense: Destructive Code Reads [4]
→ Bypass: Code-Inference Attacks [5]

• Defense: G-Free [6]
→ Bypass: Browser JIT attacks [7]

… and many more

Background

DIMVA 2016

Background

Memory disclosures in browsers

• Uninitialized variables
 – JPEG parsing leaks stack addresses (CVE-2014-6355)
 – TIFF processing information leak (CVE-2015-0061)

→ leak information into context of script-engine

• Attacker can abuse script engines (i.e., JavaScript)
 → Manipulation of internal script-engine objects
 – Pointer manipulation
 – Size field manipulation

 → very powerful

DIMVA 2016

Background

Manipulation of internal script-engine objects

buf pointer

size

buffer size

string
object

address space

DIMVA 2016

Background

Manipulation of internal script-engine objects

buf pointer

size

buffer size

string
object

code pointer

address space

DIMVA 2016

Background

Manipulation of internal script-engine objects

overwritten

buffer size

string
object

code pointer

- Attacker overwrites length field
 of string object

- Use string-object methods to
 leak code pointer into script
 context

buf pointer

address space

DIMVA 2016

Background

Information leak into script context

buffer

code pointer

script process

native memory
script context

var y = buffer[32]

y : code pointer

illegal
read

// legal :
var x = buffer[28]

Design

DIMVA 2016

Main Concept

Information-leak detection

0x11AA

(1) Master process

native memory
script context

code

0x22BB

(2) Twin process

native memory
script context

code

DIMVA 2016

Main Concept

Information-leak detection

0x11AA

(1) Master process

native memory
script context

code

0x22BB

(2) Twin process

native memory
script context

code

IPC

DIMVA 2016

Main Concept

Information-leak detection

buffer

0x11AA

(1) Master process

native memory
script context

code

buffer

0x22BB

(2) Twin process

native memory
script context

code

IPC

DIMVA 2016

Main Concept

Information-leak detection

buffer

0x11AA

(1) Master process

native memory
script context

0x11AA

illegal
read

code

buffer

0x22BB

(2) Twin process

native memory
script context

0x22BB

illegal
read code

IPC

DIMVA 2016

Main Concept

Information-leak detection

buffer

0x11AA

(1) Master process

native memory
script context

0x11AA

illegal
read

code

buffer

0x22BB

(2) Twin process

native memory
script context

0x22BB

illegal
read code

IPC

Content of variables is different if
memory pointer is disclosed

DIMVA 2016

Main Concept

• Execute two instances of script process (e.g., web
 browser)

• Enforce different address space layout in both instances

• Synchronize execution of both instances and execute
 same web data

• Check content of script variables in both instances as
 they are assigned

 → A different content of the same variable in both
 instances indicates an ongoing memory disclosure

Implementation

DIMVA 2016

Re-Randomization

• Mapped images (e.g., DLLs) have equal base addresses
 across processes (Windows) → Not ideal for our approach

 (1) Master: retrieve base addresses of mapped images
 (2) Twin: occupy base addresses

DIMVA 2016

Re-Randomization

address space of master

Retrieve base addresses of DLLs in master process

DLL_A

DLL_B

DLL_C

Base of DLL_A

Base of DLL_B

Base of DLL_C

DLL_A

DIMVA 2016

Re-Randomization

DLL_A

Enforce different address space in twin process

DLL_B

DLL_C

Base of DLL_A

Base of DLL_B

Base of DLL_C

address space of master address space of twin

DIMVA 2016

Re-Randomization

DLL_A

Enforce different address space in twin process

DLL_B

DLL_C

Base of DLL_A

Base of DLL_B

Base of DLL_C

address space of master address space of twin

allocate page

allocate page

allocate page

DIMVA 2016

Re-Randomization

DLL_A

Enforce different address space in twin process

DLL_B

DLL_C

Base of DLL_A

Base of DLL_B

Base of DLL_C

address space of master address space of twin

DLL_A

DLL_B

DLL_C

allocate page

allocate page

allocate page

DIMVA 2016

Re-Randomization

• Mapped images (e.g., DLLs) have equal base addresses
 across processes (Windows) → Not ideal for our approach

 (1) Master: retrieve base addresses of mapped images
 (2) Twin: occupy base addresses

 → Loader maps DLLs to different base addresses in
 twin process

 – Specific DLLs require special handling

• Stack and heap memory regions have already different
 base addresses per process due to ASLR

DIMVA 2016

• Instrument native functions

• Instrument bytecode handlers of script interpreter
 → e.g., call, return, conversion bytecode handler

→ Synchronization and checking points

 – master drives execution
 – twin follows execution
 – comparison of data flows between master and twin
 (script context ←→ native context)

 → fine-grained

Synchronization

DIMVA 2016

→ Compare script function return values
 return bytecode: native context → script context

→ Compare script function arguments
 call bytecode: script context → native context

Information-Leak Detection

DIMVA 2016

→ Compare script function return values
 return bytecode: native context → script context

→ Compare script function arguments
 call bytecode: script context → native context

Consistent data is required:

• Proxy relays web data received by master to the twin
 → Ensure web data is identical

• Entropy elimination (e.g., Math.random())
 → Pass return value from master to twin

Information-Leak Detection

Evaluation

DIMVA 2016

Evaluation

Successful information-leak detection

Uninitialized variables:
 – JPEG parsing bug (CVE-2014-6355)
 – TIFF processing bug (CVE-2015-0061)
 → leak stack addresses

Typed array pointer and size field manipulation with
CVE-2014-0322
 → leak vtable pointer

DIMVA 2016

Evaluation

Program startup overhead

Native Detile Slowdown

Internet Explorer 10 (new tab) 0.92 s 2.07 s 1.3 x

Internet Explorer 11 (new tab) 0.52 s 1.31 s 1.5 x

• Each new tab in Internet Explorer is a new process

 – New tab process becomes the master process
 – Additional twin process per master process

 → Increased startup time

DIMVA 2016

Evaluation

Memory overhead

Internet
Explorer 10

Memory
Consumption

(MB)

Memory
Consumption

(MB)

Internet
Explorer 11

DIMVA 2016

Evaluation

Memory overhead

Internet
Explorer 10

Memory
Consumption

(MB)

Memory
Consumption

(MB)

Internet
Explorer 11

Each twin process has private
DLL copies

→ Physical memory is not
 shared across DLLs in
 processes

→ Additional memory
 consumption

DIMVA 2016

Evaluation

Performance overhead

Script execution time in Internet Explorer 11 (ms)

→ On average: 17 % overhead

Conclusion

DIMVA 2016

Conclusion

• Information leaks are used as fundamendal step in
 modern memory corruption exploits

• Dual execution/synchronization of script-engine
 processes can detect information leaks

• Each script engine has to be handled separately

 → Detailed knowledge of engine's internals necessary
 → Manual, time consuming effort
 → Hard for binary-only code

• Induces measurable overhead

Q & A

DIMVA 2016

References
[1] Fermin J. Serna. The Info Leak Era on Software Exploitation.
 Black Hat USA, 2012.

[2] Hiser et al. ILR: Where’d My Gadgets Go? Security & Privacy, 2012.

[3] Snow et al. Just-In-Time Code Reuse: On the Effectiveness of Fine-
 Grained Address Space Layout Randomization. Security & Privacy,
 2013.

[4] Tang et al. Heisenbyte: Thwarting Memory Disclosure Attacks Using
 Destructive Code Reads. CCS, 2015.

[5] Snow et al. Return to the Zombie Gadgets: Undermining Destructive
 Code Reads via Code Inference Attacks. Security & Privacy, 2016.

[6] Onarlioglu et al. G-Free: Defeating Return-Oriented Programming
 through Gadget-less Binaries. ACSAC, 2010.

[7] Athanasakis et al. The Devil is in the Constants: Bypassing Defenses
 in Browser JIT Engines. NDSS, 2015.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

