AVRAND: A Software-Based Defense Against
Code Reuse Attacks for AVR Embedded Devices

Sergio Pastrana, Juan Tapiador,
Guillermo Suarez-Tangil, Pedro Peris-Lopez

DIMVA 2016
San Sebastian. 7,8 July 2016

COSEC

Outline

@ Introduction

@ Background: AVR and Arduino
@ AVR exploitation

@ AVRAND

@ Conclusions

»

COSEC™

Introduction

Outline

@ Introduction

COSEC

Introduction

The security of AVR devices has not been properly
considered

@ loT involves a huge variety of
architectures

o ARM, MIPS, x86, AVR...

@ Security and safety of these
devices is critical
o Connectivity (“thingbots”)
o Critical scenarios

@ Some challenges

o Resource constrained devices
o New exploitation vectors

COSEC

Introduction

The security of AVR devices has not been properly
considered

@ loT involves a huge variety of
architectures

o ARM, MIPS, x86, AVR...

@ Security and safety of these
devices is critical

o Connectivity (“thingbots”)
o Critical scenarios

@ Some challenges

o Resource constrained devices
o New exploitation vectors

AVR is an architecture used by a widely variety of devices used in
the loT, but its security has not attracted sufficient attention
»

COSEC

Background: AVR and Arduino

Outline

@ Background: AVR and Arduino

COSEC

Background: AVR and Arduino

Atmel AVR: Harvard-based architecture

@ Code and data memories are
physically separated
o Flash memory: executable, but
R/W only from from bootloader
o SRAM memory: R/W, and not
executable

AVR Device

Data memory

Flash memory

Interrupt vectors

1/0 registers

Global data

Heap

h 4

Application code

Bootloader

Unused

stack 4

COSEC

Background: AVR and Arduino

Atmel AVR: Harvard-based architecture

@ Code and data memories are

physically separated Fash Mernory o~ o~

o Flash memory: executable, but page 13
R/W only from from bootloader .
licati ection
e SRAM memory: R/W, and not feetesten Fage 14 a2, 640r 128
executable Page 15 o
@ Flash is organized in pages Page 16
T T

COSEC+

Background: AVR and Arduino

Atmel AVR: Harvard-based architecture

@ Code and data memories are
physically separated
o Flash memory: executable, but
R/W only from from bootloader
e SRAM memory: R/W, and not
executable
@ Flash is organized in pages
o PC encodes the page number and
the offset within a page

address = PCPage * PSize + PCWord

»

VITHIN THE FLASH

PROGRAM MEMORY

PAGE

/4:

'WORD ADDRESS
WITHIN A 2AGE

PAGE PCVIOACIPAGEMSE}
INSTRUCTION WCRD 0

COSEC+

Background: AVR and Arduino

In this work we provide a POC exploit targeting a

device named Arduino Yun

Arduino: "open-source electronics platform. Easy-to-use hw and sw”
Arduino Yun: "design connected devices and loT projects”

Source: Arduino official site

The Yun contains two chips connected through a internal serial
port dubbed Bridge

Ethernet

Prog. Micro USB

USB Host

»

WiFi

ARDUINO

ATmega 3204

AR9331 Linux

Micro SD

ATmega

use
Prog.

ARDUINO ENVIRONMENT

32u4 —

™
> [——] Linino
AR9331 [
Rx so

LINUX ENVIRONMENT

COSEC+

AVR exploitation

Outline

@ AVR exploitation

COSEC

AVR exploitation

The proposed exploitation abuses a stack overflow to
perform a code reuse attack

Main goal: execute commands in the Openwrt-Yun

Bridge Library — Process — void runShellCommand (String *cmd) ;

[In AVR Arguments are passed through registers (e.g. r24 and r25)]

Steps:
1. Hijack the control flow (e.g. stack overflow)
2. ROP to inject the data and prepare the arguments

3. ret2lib to force the execution of runShellCommand

»

COSEC+

AVR exploitation

When a function is called, the return address is stored

in the stack

tmp_buf£[0]

tmp_buff [BUFF_SIZE]

[R29]
[R28]
[R17]

[R16]
0x0dbe

uint8_t tmp_buff [BUFF_SIZE];

Stack

COSEC+

AVR exploitation

A stack overflow vulnerability allows an adversary to

hijack the control flow

[Stack overflow vulnerability]
while (BTSerial.available() > @) {
char ¢ = BTSerial.read(); //get:
tmp_buff[i] = ¢;
i++;

Attacker’s chosen
return address

Stack

COSEC+

AVR exploitation

ROP is based on chaining different pieces of code called
gadgets to perform the desired operation

VulnerableFunction:

Stack
Ox1ba0 sp

PC

5|55
[y

Gadget 1 (LoadArguments): [*emd_H]
[*cmd_L]
0x2db0

Gadget 2 (runShellCommand)

T

COSEC+

AVR exploitation

ROP is based on chaining different pieces of code called
gadgets to perform the desired operation

VulnerableFunction:

AT

0x1ba0
[*Cmd_H] Sp

Stack

Gadget 1 (LoadArguments):
pC — [*cmd_L]

0x2db0

Gadiet 2 (runShellCommand)
»

COSEC+

AVR exploitation

ROP is based on chaining different pieces of code called
gadgets to perform the desired operation

VulnerableFunction:

Stack

0x1ba0
Gadget 1 (LoadArguments): [*emd_H]

[*emd_L]
Gadiet 2 (runShellCommand)
»

0x2db0 sp

COSEC+

AVR exploitation

Prior to calling the function, it is needed to inject the
command (data in unused SRAM)

DATA MEMORY PROGRAM MEMORY
:x:::: Registers Interrupt vectors
X
1/0 Space Application Flash section
0x0100 .data “text
0x0100 + size(.data) bss

7.1 Store_data

0x0100 size(.bss+.data) Unused R
HEAP e 4

3
@@ ADDRESS ™| DATA i
5

NEW SP m) &Store_data

Buffer and

SEvs
saved

registers

Bootloader flash section

SP (just before return) mp|

T

’ STACK OXOAFF

pted from: [Francillon & C ia, 2008] and [Habibi et al., 2015]

AVRAND

Outline

o
Qo
@ AVRAND

»
COSEC

AVRAND

AVRAND first preprocesses the binary being flashed,
and then applies randomization at runtime

Initial Secret key AVR Device
Flash memory
Application code

Compiled runtime module (HEX)

o=

B7F894F999C5
+107€1000FECFEBO123E0FB0120935700E89507B666
107E200000FCFDCF20E030E001E0DAOLA20FB31F 38

Modifed app code (HEX)
100000000C944E010C9476010C9476010C9476018C

£100010000C9476010C9476010C9476010C94760184
+100020000C9476010C9476010C94200B0CO4EC0942

Bootloader

Runtime module
T

Data memory

Public metadata
Num_page | Type|Offset | Dest_page

Original app code (HEX)

Preprocessing
module

100000000C9450010C9488010C9488010C94880184
+100010000C9488010C9488010C9438010C9488013C
+100020000C9488010C9488010C94520D0CS4ACOB28

Num_page | Type|Offset | Dest_page

Private metadata

Position_page1 | Position_page2 | Position_page3

AVRAND

The preprocessing module converts all relative pointers
to absolute and link pages

@ Convert all relative to absolute pointers
o e.g. RCALL — CALL and RIMP — JMP

o Page linking through direct jumps

0x0000

JMP 0x0080 ¢
0x0080 :

JMP 0x0100 ¢
0x0100 :

JMP 0x0180

COSEC

AVRAND

The preprocessing module outputs information required
for the runtime randomization

@ Public metadata: where are the pointers?
o Required to recalculate pointers after randomization

| Src. page | Offset | Type | Dest. page |

o PC addresses encode page address (dynamic) and offset (static)
o Private metadata: where are the pages?

o Required to know the page addresses within the flash
o List of addresses indexed by the page number

AVRAND

AVRAND explained

Initial layout

Public metadata
FLASH M
™ 0x0000 e PAGE 1 Dest
Page 1 0x0000:.,call 0x3eb0& #page offset type oo
0x0080| movw r22, r12 ™ Absolute
Page2 e pointer to -nmﬂ
1di r25, 0x03 | page125 (af
0x0100|
. Ox3E80) +
Page 3 B
€ : o o offset 48
B4 ses
Application] . om80 & 0x007c: jmp 0x0080
cods) Page87 | .
- : ox7c
0x3E80| 3 Link to page 2
Page 125 (at 0x0080)
0x4B00) %
Page 150
Unused FF FF FFFF ...
Bootloader [0%7000)
v { Bootloader

Private metadata (e.g. in EEPROM)
Pagel Page2 Page3 Page 87 Page 125 Page 150

‘ 0x0000 ‘ 0x0080 ‘ 0x0100 ‘ ‘ 0x0D80 ‘ ‘ 0x3E80 ‘ ‘ 0x4B00 ‘

AVRAND

AVRAND explained

1. Copy the private metadata to SRAM

[FLASH Memory

0x0000
Page 1

0x0080
Page2

0x0100
page 3

0x2880
Page 87

0x3E80
Page 125

0x4B0OO
Page 150

FF FFFFFF.

0x7000

Bootloader

[SRAM Memory
|Copy of private metadata
Pagel Page2 Page3 Page 87 Page 125 Page 150
‘ 0x0000 ‘ 0x0080 ‘ 0x0100 “ 0x0D80 ‘ ‘ 0x3E80 ‘ ‘ 0x4B00

Public metadata

Dest
#page offset type oo

-n A E

COSEC

AVRAND

AVRAND explained

2. Modify the copy by swapping pages randomly

[SRAM Memory
[Copy of private metadata W
Pagel Page2 Page3 Page 87 Page 125 Page 150
0x2880 ‘ 0x4B00 ‘ 0x00AD ‘ ‘ 0x0000 ‘ ‘ 0x1E00 ‘ ‘ 0x0080
FLASH Memory Public metadata
0x0000
Dest
Page 1
g #page offset type ..o
0x0080
Page 2 CALL
0x0100
Page3
0x2B80 =
Page 87
0x3E80
Page 125
0x4B0OO
Page 150
FF FFFFFF ..
0x7000
Bootloader

COSEC

AVRAND

AVRAND explained

3. Copy each pair of swapped pages to SRAM

0x3E80

0x4B00

0x7000

0x0080

0x0100

0x2880

[FLASH Memory
0x0000 page1 PAGE 1

Page2

page 3

Page 87

Page 125

Page 150

FF FFFFFF.

Bootloader

[sRAM Memory

Copy of private metadata
Pagel Page2 Page3 Page 87

Page 125 Page 150
0x2B80 ‘ 0x4B0O | OX00AD ‘ ‘ 0x0000 ‘ - ‘ Ox1E00 ‘ . ‘ 0x0080

call 0x3eb0

movw r22, ril2
1di r24,0x09
ldi r25, 0x03

Smp 0x0080

\/ PAGE 87
in r28, 0x3d

in r29, 0x3e
1di r30, 0xB3

Public metadata

Dest
#pageoffset type ..o

-n A E

AVRAND

AVRAND explained

4. Update pointers on each page (using the metadata)

[sRAM Memory

Copy of private metadata
Page 1 Page 2 Page 3 Page 87 Page 125 Page 150
0x2B80 ‘ 0x4B00 ‘ 0x00AD ‘ ‘ 0x0000 _ ‘ 0x0080

[FLASH Memory Public metadata
0x0000 PAGE 1 Dest
Page 1 # page offset type
x0080 call Oxle30 (L5 VPe page
x
page 2 movw r22, rl2
& 1di r24,0x09 CALL
0x0100 1di r25, 0x03
Page 3
02880
Page 87 Jmp 0x0080
— PAGE 87
* Page 125 in r28, 0Ox3d

in r29, 0x3e
1di r30, 0xB3

0x4B0OO
Page 150

FF FFFFFF.

0x7000
Bootloader

AVRAND

AVRAND explained

4. Update pointers on each page (using the metadata)

[SRAM Memory
[Copy of private metadata
Pagel Page2 Page3 Page 87 Page 125 Page 150
‘ 0x2880 - 0x00AD ‘ ‘ 0x0000 ‘ ‘ 0x1E00 ‘ . ‘ 0x0080
[FLASH Memory Public metadata
0x0000 PAGE 1 Dest
Page 1 #page offset type
call 0xle30 PaE VPe page
Ox0080| o2 movw r22, r12
1di r24,0x09
0x0100 1di r25, 0x03
Page3
0x2B80 =
Page 87 jmp 0x4BOO
ox3m80 PAGE 87
* Page 125 in r28, 0x3d
in r29, Ox3e
1di r30, 0xB3
0x4B0OO
Page 150
FF FFFFFF ..
0x7000
Bootloader

AVRAND

AVRAND explained

5. Copy back to flash into each other’s previous position

[FLASH Memory

0x0000
Page 87

0x0080
Page2

0x0100
page 3

02880
Page 1

0x3E80
Page 125

0x4B0OO
Page 150

FF FFFFFF.

0x7000
Bootloader

[sRAM Memory

Copy of private metadata
Pagel Page2 Page3

Page 87

Page 150

0x2B80 ‘ 0x4B0O | OX00AD ‘ ‘ 0x0000 ‘

‘ 0x0080

PAGE 1

call Oxle30

movw r22, rl2
1di r24,0x09
ldi r25, 0x03

Smp 0x4BOO

PAGE 87
in r28, 0x3d
in 129, Ox3e
r30, 0xB3

Public metadata

page offset type

-n A E

Dest
page

AVRAND

AVRAND explained

Modified layout

FLASH Memo%o i~
x

Page 87
0x0080|
Page 150
Public metadat:
0x0100| Page 45 call 0xle30 'ublic m¢ lata
movw x22, riNN est
1di r24,0x09 Updated | #page offset type .00

Application 0x1E00| o 1di r25, 0x03 pointer to
code page 125 |4 page 12)5 (at cALL
0x1E00) +

offset 48

0x2B80| P
Page 1 0x2bfc: jmp Oxw .

N

0x4B00| Updated link to
ox7
Page 2 page 2 (at 0x4B00) -m-

Unused FFFFEFFF ...
0x7000)
B‘;‘:“c:;::el Bootloader

Private metadata (e.g. in EEPROM)
Pagel Page2 Page3 Page 87 Page 125 Page 150

‘ 0x2B80 | 0x4B00 | Ox00AD

‘ 0x0000 ‘ ‘ 0x1E00 ‘ ... | 0x0080

AVRAND

The bootloader itself must be protected from code
reuse attacks

Goal: Obfuscating the bootloader
@ Approach: the bootloader is stored encrypted, and is decrypted at
runtime.
@ Due to resource limitations, we use XOR-based encryption
o Brute force prevention: Key is renewed during each re-randomization
@ Steps
1 Decrypt bootloader
2 Jump to randomization engine
3 Renew key

4 Encrypt bootloader
5 Jump to the beginning of the program (Entry Point)

Conclusions

Outline

Conclusions

COSEC

Conclusions

AVRAND goes one step further regarding security of
AVR-based embedded devices

@ AVR is an architecture used in many devices, but its security has not
been considered

@ A POC exploit shows how an Arduino chip can be compromised
using code reuse attacks

@ AVRAND hinders these attacks by means of memory layout
randomization
@ Strengths:

o Software-based defense (independent of manufacturers, reduce costs)
o Insignificant processing overhead (<1s)
e High entropy (though depends on the number of pages)

o Limitations:

o Extra memory overhead (~ 20%)
» @ Reduction of device lifetime (limited flash cycles)

COSEC+

Prototypes available at:
http://www.seg.inf.uc3m.es/~spastran/avrand

COSEC*

http://www.seg.inf.uc3m.es/~spastran/avrand

AVRAND: A Software-Based Defense Against
Code Reuse Attacks for AVR Embedded Devices

Sergio Pastrana, Juan Tapiador,
Guillermo Suarez-Tangil, Pedro Peris-Lopez

DIMVA 2016
San Sebastian. 7,8 July 2016

COSEC

Backup slide: AVRAND limitations

Randomization can occur in each device reset or periodically:

@ Frequency of randomizations: depends on the scenario
o On each device reset (current approach)

v/ Prevent code reuse attacks that crash the device
X May be vulnerable to brute-force that clean the stack

o Periodically, using timeouts

/" Brute force attacks are restricted to a limited period of time
X Still, there is a vulnerable window
X Flash memory has limited re-flashing cycles (e.g. 4.000 in Yun)

@ Limitation: Code size overhead
o The preprocessing module increases code size by an avg. of 20%
o Binaries are compiled with full optimization enabled (-03)
o All sample sketches from Arduino official site fit well in the Yun
device, though

COSEC

	Introduction
	Background: AVR and Arduino
	AVR exploitation
	AVRAND
	Conclusions
	Appendix

