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Status Quo

 Malware detectors have room to improve
— Only 66% of malware detected in first 24 hours”

— 93% of malware detected in first month”
(*Damballa: State of Infections Report Q4 2014)

ML research outperforms industry detectors
— Multiple projects claiming >90% detection
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Questions and Answers

This talk explores two questions and answers

Q: Why does research outperform industry?
A: Research is offline, accurate training labels

Q: Can the performance gap be closed?
A: Yes, by expert review of selected samples



Concrete Contributions

* Temporally consistent labels
— Explains detection rate drop from 91% to 72%

* ML guided human reviewer integration
— Increases detection from 72% to 89%

— Detects 42% of previously undetected malware

* Open, scalable implementation & sample data



Overview

* Dataset analysis and design
— Measure label shift; simulate reviewers at scale

* Experimental design

— Accommodates time and integrated reviewers

* Experimental results

— Demonstrated impact of labeling and reviewers



DATASET ANALYSIS AND DESIGN



Data Source

S total

Scans submitted binaries with multiple AVs

Each scan of a binary has a timestamp
Re-scans occur upon request or re-submission
1M+ samples, 2M+ scans, spanning 2.5 years
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Number of Samples (thousands)

Initial Detection Results

Distribution of Total Detection Counts
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Detection Changes

Detections generally increase with time

Detection Changes in Samples with Multiple Scans
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Final Detection Results

* Rescan ambiguous samples to clarify labels

Distribution of Total Detection Counts
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Final Detection Results

* Rescan ambiguous samples to clarify labels

Distribution of Total Detection Counts
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Final Detection Results

* Rescan ambiguous samples to clarify labels

Distribution of Total Detection Counts
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Final Detection Results

* Rescan ambiguous samples to clarify labels

Distribution of Total Detection Counts

Totals Before Rescan
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Reviewer Simulation at Scale

e Expert review not tractable for our scale

 We use simulation to study review at scale

* Final scan of sample simulates reviewer label

— Added noise simulates imperfect reviewers



EXPERIMENTAL DESIGN



Classical ML Approach

e Standard machine learning workflow

Available Automatic Labeled

Dataset Labeling Dataset

/\

Training Feature Learned Evaluation

Data & Labels Vectors Model Data & Labels

 Randomly divides training and evaluation data
* Training and evaluation labels are high quality
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Chronological Sample Epochs

* Epochs provide sample temporal consistency

Training Prediction / Evaluation

Epoch 1 Epoch 2 Epoch3 Epoch 4 Epoch 5
N

Train Predict

 Random division breaks temporal consistency

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5

! ) \ ! )

Predict Train Train Predict Train
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Temporally Consistent Labels

* Training labels must be known at training time
e Best possible labels used for evaluation

Benign Malicious

Time 1 Sample 1 |J| Sample 2 ||| Sample 3

Time 2 Sample 1 [J| Sample 2 |}]| Sample 3 |}| Sample 4 ||| Sample 5 | | Sample 6

Timeeo | Sample 1 || Sample 2 || Sample 3 [{| Sample 4 |}| Sample 5 | | Sample 6
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Reviewer Query Strategy

e Score candidate samples with current model
* Submit samples as query budget allows

' Dynamlc Threshold | Fixed Threshold

—————————————

—_0O Current Model Predictions 400

-

Maintain Submit to Human Re-Label
Benign Label ' Reviewer as Budget Allows | As Malicious




EXPERIMENTAL RESULTS



Performance Overview
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Impact of Reviewer Queries

Detection at 0.005 FPR
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Catching Undetected Malware

ML + reviewers increases detector robustness
Detects 42% of previously undetected malware

Distribution of Total Detection Counts
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Open Source & Data Release

* Modular design facilitates future work
— Portable across application domains
— Agnostic to learning algorithm and label source

* Scales well to large amounts of data
— 778GB of raw data in ~12 hours with 40 cores
— Apache Spark manages computation

* Data release enables reproducible results
— 3% of our entire data set
— List of all hashes



CONCLUSION



Key Results

* Account for industry performance gap
— Offer improved technique for academic evaluation

e Offer solution to improve performance gap
— Increases detection from 72% to 89%
— Detects 42% of previously undetected malware

* Publicly release implementation and data






