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Introduction

• Web browsers are prone to memory corruption 
  vulnerabilities

• Widely deployed exploit mitigations: DEP and ASLR

• Attackers ultimate goal: Execute code of choice via 
  control-flow hijacking

→ Knowledge about memory layout is necessary to 
bypass ASLR (information leak or memory disclosure)

     Afterwards, code reuse can be conducted
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Information leaks in-the-wild, e.g., CVE-2012-0769 [1]:
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Information leaks in-the-wild, e.g., CVE-2012-0769 [1]:

Forbidden information of native memory
in script context
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Introduction

Information leaks in academia:

• Defense: Fine-Grained ASLR [2] 
→ Bypass: Just-In-Time Code Reuse [3]

• Defense: Destructive Code Reads [4]
→ Bypass: Code-Inference Attacks [5]

• Defense: G-Free [6]
→ Bypass: Browser JIT attacks [7]

… and many more
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Background

Memory disclosures in browsers

• Uninitialized variables
  – JPEG parsing leaks stack addresses (CVE-2014-6355)
  – TIFF processing information leak (CVE-2015-0061)

→ leak information into context of script-engine

• Attacker can abuse script engines (i.e., JavaScript)
  →  Manipulation of internal script-engine objects
      –  Pointer manipulation
      –  Size field manipulation

      → very powerful
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Manipulation of internal script-engine objects
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Background

Manipulation of internal script-engine objects

overwritten

buffer size

string 
object

code pointer

- Attacker overwrites length field
  of string object

- Use string-object methods to 
  leak code pointer into script 
  context

buf pointer

address space
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Background

Information leak into script context

buffer

code pointer

script process

native memory
script context

var y = buffer[32]

y : code pointer 

illegal
read

// legal :
var x = buffer[28]
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Main Concept
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Information-leak detection
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Content of variables is different if 
memory pointer is disclosed
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Main Concept 

• Execute two instances of script process (e.g., web 
  browser)

• Enforce different address space layout in both instances

• Synchronize execution of both instances and execute
  same web data

• Check content of script variables in both instances as 
  they are assigned

  →  A different content of the same variable in both 
        instances indicates an ongoing memory disclosure



Implementation
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Re-Randomization

• Mapped images (e.g., DLLs) have equal base addresses 
  across processes (Windows) → Not ideal for our approach

  (1) Master: retrieve base addresses of mapped images
  (2) Twin: occupy base addresses
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Re-Randomization

address space of master

Retrieve base addresses of DLLs in master process
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Re-Randomization

• Mapped images (e.g., DLLs) have equal base addresses 
  across processes (Windows) → Not ideal for our approach

  (1) Master: retrieve base addresses of mapped images
  (2) Twin: occupy base addresses

      → Loader maps DLLs to different base addresses in 
  twin process

       –  Specific DLLs require special handling 

• Stack and heap memory regions have already different 
  base addresses per process due to ASLR
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• Instrument native functions

• Instrument bytecode handlers of script interpreter
   → e.g., call, return, conversion bytecode handler

→ Synchronization and checking points
    
     –  master drives execution
     –  twin follows execution
     –  comparison of data flows between master and twin
         (script context ←→  native context)
     
      → fine-grained

Synchronization
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→ Compare script function return values
     return bytecode: native context → script context

→ Compare script function arguments
     call bytecode: script context → native context

Information-Leak Detection
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→ Compare script function return values
     return bytecode: native context → script context

→ Compare script function arguments
     call bytecode: script context → native context

Consistent data is required:

• Proxy relays web data received by master to the twin
  → Ensure web data is identical

• Entropy elimination (e.g., Math.random())
  → Pass return value from master to twin

Information-Leak Detection
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Evaluation

Successful information-leak detection

Uninitialized variables:
  – JPEG parsing bug (CVE-2014-6355)
  – TIFF processing bug (CVE-2015-0061)
  →  leak stack addresses

  
Typed array pointer and size field manipulation with 
CVE-2014-0322
  →  leak vtable pointer
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Evaluation

Program startup overhead

Native Detile Slowdown

Internet Explorer 10 (new tab) 0.92 s 2.07 s 1.3 x

Internet Explorer 11 (new tab) 0.52 s 1.31 s 1.5 x

• Each new tab in Internet Explorer is a new process 

    – New tab process becomes the master process
    – Additional twin process per master process

  → Increased startup time
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Evaluation

Memory overhead
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Evaluation

Memory overhead

Internet 
Explorer 10

Memory
Consumption

(MB)

Memory
Consumption

(MB)

Internet 
Explorer 11

Each twin process has private 
DLL copies

→ Physical memory is not 
    shared across DLLs in 
    processes

→ Additional memory 
     consumption
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Evaluation

Performance overhead

Script execution time in Internet Explorer 11 (ms)

→ On average: 17 % overhead
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Conclusion

• Information leaks are used as fundamendal step in 
  modern memory corruption exploits

• Dual execution/synchronization of script-engine 
  processes can detect information leaks

• Each script engine has to be handled separately

   → Detailed knowledge of engine's internals necessary
   → Manual, time consuming effort
   → Hard for binary-only code

• Induces measurable overhead



Q & A
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