k]

CSAIL

AutoRand: Automatic
Keyword Randomization to
Prevent Injection Attacks

Jeff Perkins
MIT CSAIL
July 2016

Jordan Eikenberry, Daniel Willenson, Stelios Sidiriglou, and
Martin Rinard of MIT/CSAIL

Alessandro Coglio of Kestrel Institute

SQL Injection

* Code:

String.format ("select .. where user='%s'and
passwd='%$s'", user, passwd);

* Inputs:
user = John'or 1=1 —-
passwd = xx

* Executed SQL:

select .. where user='John'or 1=1 --"Tand
passwd="xx"’

e Result: Attacker can access information without
knowing the password

Isn’t this a Solved Problem?

* Prepared statements are easy to use and prevent
Injections

* But attacks still occur

* Many documented attacks since May (Muslim Match
dating site, Oracle eBusiness Suite, Drupal sites, and
many more)

* Chinesetoy company VTech lost the personal data of
over 4 millioncustomerslast November

 Sony break-in alone cost $170 million
* First entry in the CWE/SANS top 25 list

* Firstentry in the OWASP top 10 list

Coding Solutions are Insufficient

* Require source code

* Require programmer time and understanding
* Can’t be utilized by end-users of the code

* Require Developers to be error free

AutoRand

* Operates on Java byte-code (no sourcerequired)

* Fully automatic

* Applicable to large real-world programs

* Eliminates injection attacks without false positives
* Low overhead

AutoRand Concept

* Similar to instruction set randomization

* Randomize SQL keywords (and operators/comment
tokens) in the program and the SQL grammar

* Check SQL commands for valid (i.e., randomized)

keywords
select<key> .. where<key> user="'John'
or 1=1 —-"and<key> passwd="'"xx"
* The token "or ' is not a valid operator and the
command will fail the check. The '—-"' comment

token is also invalid

Previous Work

* SQLRand introduced manual randomization

* Developer
* Finds each stringcontaining SQL keywords
* Runsthestringthrough the SQLRand tool
* Copiestheresultbackintothe source

* SQLRand proxy checks SQL commands for validity
* Not Automatic

* Randomized keywords may flow outside of SQL
(files, error messages, etc)
* Change the semantics of the program
* Leak the random key

Automation is Challenging

* SQL keywords may appear in non-SQL contexts

String button = "select"
fis = new FileInputStream (button + ".jpg"):;

* The same constant may be used in both SQL and non-
SQL contexts

* AutoRand must
* Addthe key to all SQL keywords
* Propagatethe key across stringoperations

* Performallstringmethods transparently (as if the key was
not there)

* Hide the key from allnon-SQL operations (output, filenames,
environmentvariables, reflection, etc.)

Augmented Strings

* Additional characters (payload) can be carried in
strings transparently to the program

* Payload is propagated across all string operations

* Payload is identified by a complex random key
* Example operations

° equal ("select<key>", "select") == true
* concat ("or", " or<key>") == "or or<key>"
* len ("select<key>") == 6

° substr ("select<key> from", 8, 12) == "from"

Augmented Strings in AutoRand

* Random key is placed after each SQL keyword (no
other payload is needed)

 Random key is transparent to the program's normal
operation

* SQL processing statements check for valid
(randomized) keywords

Correctness

* Transparency

A given state and string operation are transparentif
runningthe operationin the state producesthe same
result as runningthe original operationin the de-

randomized state
* Propagation

A given operation satisfies propagationif each keyword
that is propagated fromits inputsto its outputis
consistently randomized.

Transparency

op(S) = r~1(op'(r(5)))

Where

* r randomizes strings

 r~1 derandomizes strings

* op(S) takes a string and yields a string on output
* op'(S) AutoRand replacement operatorfor op(S)

Transparency: Operations on non-
Strings

* r~1is a nop on non-strings
/ —
* op’(S) = op(S)
len ("select") == len("select<key>") == 06

e Same results on same inputs

substr ("select *", 06)
= substr ("select<key> *", 6) == " *x"

Propagation
(K, €5) A(K €op(r™(5))) < K, €0p'(S)

Where

* K. is a randomized keyword

* K is the corresponding keyword

r randomizes strings

r~1 derandomizes strings

op(S) takes a string and yields a string on output
op' (S) AutoRand replacementoperatorfor op(S)

Randomization of Program
Constants

* Tokenize each string constant

* Replace each SQL keyword with keyword<key>
* Keyis 10 upper/lower case letters/digits

« 6219 possible combinations (~60 bits)

* Key size is easily configurable

Instrumentation Approach

* Replace ca
AutoRand

 AutoRand

s to string methods with calls to the
ibrary

ibrary methods

e Static call taking the receiver as the first argument (call
stack is unchanged)

* Adjustthe arguments as necessary (e.g., derandomize)
 Call the original method or re-implement.

* Instrumentboth the application and the Java

libraries

SQL API Calls

* Interceptcalls to the Java SQL interface
* Tokenize the SQL statement

* All tokens that are SQL keywords are checked for
the random key

* If any keywords are invalid, an erroris thrown

* Otherwise, all of the random keys are removed,
and the SQL command executed in the normal
fashion

String Manipulations

* Many operations need to be adjusted to achieve
transparency and propagation

* Operation categories
* Observer methods
* Completestring methods
* Partial string methods
* Character methods

* Misc methods [see paper for details]

Classification by Method
Category | Methods

Complete <init>, append, appendCP, concat, copyValueOf, toString, valueOf

Observer compareTo*, contains, contentEquals, endsWith, equals*,
hashcode, indexOf, isEmpty, lastindexOf, length, matches,
offsetByCPs, regionMatches, startsWith

Partial delete*, format, insert, replace*, setCharAt, toUpperCase, trim
Character charAt, codePoint*, getBytes, getChars, toCharArray

Miscellaneous Capacity, ensureCapacity, intern, reverse, trimToSize

e String, StringBuffer, and StringBuildercalls

e Similar calls (indicated with *) and calls that differ only in
their arguments are grouped together

* CodePointisabbreviatedas CP

Observer Methods

* Do not create or modify strings

* AutoRand derandomizes each string argument and
applies the original methods

AutoRand.length (String s) {
return derandomize (s) .length();

}

* Propagation is not an issue (since strings are not
created or modified)

* Transparency is guaranteed since the operation
uses the derandomized string

Complete String Methods

* Operate on entire strings, not portions of them

* Entire content of string is propagated (including
keys) guaranteeing propagation and transparency

 AutoRand leavesthese calls unmodified

Partial String Methods

* Methods that operate on pieces of a string

* Pieces can be specified by indices or substring
matches

e Matchescan beturned intoindices

* AutoRand supports these operations by mapping
the operation from the original (derandomized)
string to the randomized string

Index Map

* Map from character indices in derandomized string
to randomized string

* Allows any operation over indices to be applied to
the randomized string.

* Key operations are substring, delete and insert.
* All string operationscan be builtfrom these

* Guarantees that keys are always included entirely
or not at all (with their proceeding character)

Index Map Example

Select * from,_,

9219 13 23 14334

select<key> K rom<key>

SubString

e Substring from start index (inclusive) to the end
index (exclusive)

* Substring (9,13) - Substring (19,33)

Select, ,*,_ ,from_,

020 525 6216 9219 12922 13-333

select<key>' *_ from<key>':,

Insert and Delete

* Similar to substring
* Delete from start (inclusive) to end (exclusive)
* Insert string before specified index

* Inserts cannot occur in the middle of a key or
between a keyword and its key.

Complex Methods: Example
Implementation of Replace

replace (String s, String target, String repl)
StringBuffer sb = new StringBuffer();
int start = 0;
int offset = s.indexOf (target);
while (offset !'= -1) {
sb.append (s.substr (start, offset);
sb.append (repl);
start = offset + target.length();
offset = s.indexOf (target, start);

}
sb.append (s.substr (start));

Character Methods

* Convert (portions of) strings to characters, bytes
code points or arrays thereof

* AutoRand derandomizes before conversion
preserving transparency

* Since the resultis not a string, keys are not
propagated.

Are Character Methods a
Problem?

* In order for propagation to be an issue, the
following must occur

String(w/keys) — chars/bytes — String = SQL

* Seemingly there is little reason to manipulate
program constantsin this fashion

* We evaluated this conservatively in our evaluation
programs

String(w/keys) — chars/bytes — String

Evaluation Programs

Lines of .

Ant 256K A Java build system

Barcode4) 28K A barcode generator

FindBugs 208K A bug finder

FTPS 40K An FTP Server

HTMLCleaner 9K An HTML formatter

JMeter 178K A performance measurement tool
PMD 110K A source code analyzer

SchemaSpy 16K A database inspecting tool

Character Method Calls by
Application

Character Call | Applications

getBytes Ant and FTPS Prepare for stream output
getChars JMeter (one class) XML output

toCharArray JMeter (one class) XML output

charAt 7 of 8 (12 call sites) String queries
codePointAt none Similar to charAt

e Useisrarein general
e Qutput is not an issue as the string would be derandomized for output anyway
* String Queries
* charAt() method is sometimes used to process a string char by char
» Strings can be built on the information found
* Ineachcase, however, strings are build based on the indices found in the
original string and not from the individual characters

Evaluation

* Independent T&E team developed tests

* Injected Vulnerabilities

* Real world programs (16K to 256K lines of code)

e SQL vulnerabilitiesadded to various locationsin
program

* Smaller focused test programs with vulnerabilities
» Tested with benign and attack inputs
* Correctbehavior with benign inputs was checked

Results on Injected Vulnerabilities

13 attack variants
* 1to 43 unique injection locations per program
* MySQL, Postgres, Microsoft SQLServer databases

» 289 distinct test cases (base program * variant *
injection location

* 2 benign and 5 attack inputs for each test case

* All attacks were detected with no false positives (or
change in behavior)

Focused Test Results

* 17 test programs written by T&E team.
* MySQL, Hibernate and Postgres databases

 Attack types included string tautology, adding
syntax to primitive types, and adding comments to
primitive types.

* All attacks were detected with no false positives (or
change in behavior)

Overhead

* Evaluation Programs

* One benign test case from each program/variant
combination

e 23 total test cases

* Overhead ranged from 0% to 15% with an average of
4.9%

* OpenCMS (content management system, 100K
LOC)
* Site contentstoredin database
* Captured and replayed 1000 interactions
* 4.5% overhead

Related Work

* Manual Prevention Error-free coding practices
* SQLRand

* Parse tree structures
 Attacks modify query structure

e Static Analysis
* Static data flows

* Dynamic taint tracking (WASP)

Java Taint Tracking: WASP

* Tracks trusted (not untrusted data)

* Instruments applications to use its MetaString
library

* Does not instrumentJava libraries

* Loses taint on any string created in the Javalibraries
* Pattern, Matcher, Formatter, etc

 Evaluated only on smaller applications (17K LOC or
less)

* 6.1% overhead with no coverage of the Java
libraries

AutoRand can Provide Real-World
Protection

* Fully automatic
* Source code is not required
* Low overhead (4.9%)

* Verified on large complex real-world programs

