
1/22

AVRAND: A Software-Based Defense Against Code Reuse Attacks for AVR Embedded Devices

AVRAND: A Software-Based Defense Against
Code Reuse Attacks for AVR Embedded Devices

Sergio Pastrana, Juan Tapiador,
Guillermo Suarez-Tangil, Pedro Peris-Lopez

DIMVA 2016
San Sebastian. 7,8 July 2016

2/22

AVRAND: A Software-Based Defense Against Code Reuse Attacks for AVR Embedded Devices

Outline

1 Introduction

2 Background: AVR and Arduino

3 AVR exploitation

4 AVRAND

5 Conclusions

3/22

AVRAND: A Software-Based Defense Against Code Reuse Attacks for AVR Embedded Devices

Introduction

Outline

1 Introduction

2 Background: AVR and Arduino

3 AVR exploitation

4 AVRAND

5 Conclusions

4/22

AVRAND: A Software-Based Defense Against Code Reuse Attacks for AVR Embedded Devices

Introduction

The security of AVR devices has not been properly
considered

IoT involves a huge variety of
architectures

ARM, MIPS, x86, AVR...

Security and safety of these
devices is critical

Connectivity (“thingbots”)
Critical scenarios

Some challenges

Resource constrained devices
New exploitation vectors

AVR is an architecture used by a widely variety of devices used in
the IoT, but its security has not attracted sufficient attention

4/22

AVRAND: A Software-Based Defense Against Code Reuse Attacks for AVR Embedded Devices

Introduction

The security of AVR devices has not been properly
considered

IoT involves a huge variety of
architectures

ARM, MIPS, x86, AVR...

Security and safety of these
devices is critical

Connectivity (“thingbots”)
Critical scenarios !

Some challenges

Resource constrained devices
New exploitation vectors

AVR is an architecture used by a widely variety of devices used in
the IoT, but its security has not attracted sufficient attention

5/22

AVRAND: A Software-Based Defense Against Code Reuse Attacks for AVR Embedded Devices

Background: AVR and Arduino

Outline

1 Introduction

2 Background: AVR and Arduino

3 AVR exploitation

4 AVRAND

5 Conclusions

6/22

AVRAND: A Software-Based Defense Against Code Reuse Attacks for AVR Embedded Devices

Background: AVR and Arduino

Atmel AVR: Harvard-based architecture

Code and data memories are
physically separated

Flash memory: executable, but
R/W only from from bootloader
SRAM memory: R/W, and not
executable

Flash is organized in pages

PC encodes the page number and
the offset within a page

address = PCPage ∗ PSize + PCWord

AVR Device

Bootloader

Application code

Flash memory

Global data

Data memory

I/O registers

Heap

Unused

Stack

Interrupt vectors

6/22

AVRAND: A Software-Based Defense Against Code Reuse Attacks for AVR Embedded Devices

Background: AVR and Arduino

Atmel AVR: Harvard-based architecture

Code and data memories are
physically separated

Flash memory: executable, but
R/W only from from bootloader
SRAM memory: R/W, and not
executable

Flash is organized in pages

PC encodes the page number and
the offset within a page

address = PCPage ∗ PSize + PCWord

6/22

AVRAND: A Software-Based Defense Against Code Reuse Attacks for AVR Embedded Devices

Background: AVR and Arduino

Atmel AVR: Harvard-based architecture

Code and data memories are
physically separated

Flash memory: executable, but
R/W only from from bootloader
SRAM memory: R/W, and not
executable

Flash is organized in pages

PC encodes the page number and
the offset within a page

address = PCPage ∗ PSize + PCWord

7/22

AVRAND: A Software-Based Defense Against Code Reuse Attacks for AVR Embedded Devices

Background: AVR and Arduino

In this work we provide a POC exploit targeting a
device named Arduino Yun

Arduino: ”open-source electronics platform. Easy-to-use hw and sw”
Arduino Yun: ”design connected devices and IoT projects”
Source: Arduino official site

The Yun contains two chips connected through a internal serial
port dubbed Bridge

8/22

AVRAND: A Software-Based Defense Against Code Reuse Attacks for AVR Embedded Devices

AVR exploitation

Outline

1 Introduction

2 Background: AVR and Arduino

3 AVR exploitation

4 AVRAND

5 Conclusions

9/22

AVRAND: A Software-Based Defense Against Code Reuse Attacks for AVR Embedded Devices

AVR exploitation

The proposed exploitation abuses a stack overflow to
perform a code reuse attack

Main goal: execute commands in the Openwrt-Yun

Bridge Library → Process → void runShellCommand (String *cmd);

[In AVR Arguments are passed through registers (e.g. r24 and r25)]

Steps:

1. Hijack the control flow (e.g. stack overflow)

2. ROP to inject the data and prepare the arguments

3. ret2lib to force the execution of runShellCommand

10/22

AVRAND: A Software-Based Defense Against Code Reuse Attacks for AVR Embedded Devices

AVR exploitation

When a function is called, the return address is stored
in the stack

11/22

AVRAND: A Software-Based Defense Against Code Reuse Attacks for AVR Embedded Devices

AVR exploitation

A stack overflow vulnerability allows an adversary to
hijack the control flow

12/22

AVRAND: A Software-Based Defense Against Code Reuse Attacks for AVR Embedded Devices

AVR exploitation

ROP is based on chaining different pieces of code called
gadgets to perform the desired operation

12/22

AVRAND: A Software-Based Defense Against Code Reuse Attacks for AVR Embedded Devices

AVR exploitation

ROP is based on chaining different pieces of code called
gadgets to perform the desired operation

12/22

AVRAND: A Software-Based Defense Against Code Reuse Attacks for AVR Embedded Devices

AVR exploitation

ROP is based on chaining different pieces of code called
gadgets to perform the desired operation

13/22

AVRAND: A Software-Based Defense Against Code Reuse Attacks for AVR Embedded Devices

AVR exploitation

Prior to calling the function, it is needed to inject the
command (data in unused SRAM)

 Application Flash section
.text

5

Store_data

Stack_move

Reset_chip

1

2

3

6

4

Registers
I/O Space

.data

.bss

Unused

&Store_data

ADDRESS

DATA

&Reset_chip

Padding (if needed)

...

&Stack_move

NEW SP

...

c

DATA

Buffer and
callee
saved

registers

c

DATA MEMORY PROGRAM MEMORY
Interrupt vectors

Bootloader flash section

0x0000
0x0020

0x0100

 0x0100 + size(.data)

0x0100 size(.bss+.data)

ADDRESS

NEW SP

SP (just before return)

0x0AFFSTACK

HEAP

Adapted from: [Francillon & Castellucia, 2008] and [Habibi et al., 2015]

14/22

AVRAND: A Software-Based Defense Against Code Reuse Attacks for AVR Embedded Devices

AVRAND

Outline

1 Introduction

2 Background: AVR and Arduino

3 AVR exploitation

4 AVRAND

5 Conclusions

15/22

AVRAND: A Software-Based Defense Against Code Reuse Attacks for AVR Embedded Devices

AVRAND

AVRAND first preprocesses the binary being flashed,
and then applies randomization at runtime

AVR Device

Bootloader

Application code
Flash memory

EEPROM

Preprocessing
module

Runtime module

Original app code (HEX)
:100000000C9450010C9488010C9488010C94880184
:100010000C9488010C9488010C9488010C9488013C
:100020000C9488010C9488010C94520D0C94AC0B28

...

Modifed app code (HEX)
:100000000C944E010C9476010C9476010C947601BC
:100010000C9476010C9476010C9476010C94760184
:100020000C9476010C9476010C94200B0C94EC0942

...

Private metadata

Public metadata

...

Type|OffsetType|OffsetNum_pageNum_page Dest_pageDest_page

Type|OffsetType|OffsetNum_pageNum_page Dest_pageDest_page

Position_page2Position_page2Position_page1Position_page1 Position_page3Position_page3
XOR

Compiled runtime module (HEX)
:107E0000FF920F931F93CF93DF931FB7F894F999C5
:107E1000FECFEB0123E0FB0120935700E89507B666
:107E200000FCFDCF20E030E001E0DA01A20FB31F3B

...

XOR

Initial Secret key

Data memory

16/22

AVRAND: A Software-Based Defense Against Code Reuse Attacks for AVR Embedded Devices

AVRAND

The preprocessing module converts all relative pointers
to absolute and link pages

Convert all relative to absolute pointers

e.g. RCALL → CALL and RJMP → JMP

Page linking through direct jumps

...

JMP 0x0080

...

JMP 0x0100

...

JMP 0x0180

0x0000

0x0080

0x0100

17/22

AVRAND: A Software-Based Defense Against Code Reuse Attacks for AVR Embedded Devices

AVRAND

The preprocessing module outputs information required
for the runtime randomization

Public metadata: where are the pointers?

Required to recalculate pointers after randomization

Src. page Offset Type Dest. page

PC addresses encode page address (dynamic) and offset (static)

Private metadata: where are the pages?

Required to know the page addresses within the flash
List of addresses indexed by the page number

18/22

AVRAND: A Software-Based Defense Against Code Reuse Attacks for AVR Embedded Devices

AVRAND

AVRAND explained

Initial layout

Public metadata
FLASH Memory

Page 1

Page 2

Page 3

...

Page 150

0x0000: call 0x3eb0
 movw r22, r12
 ldi r24,0x09
 ldi r25, 0x03

...

0x007c: jmp 0x0080

0x0000

0x0080

0x0100

0x4B00

Link to page 2
(at 0x0080)

FF FF FF FF ...

Bootloader
0x7000

Application
code

Unused

Bootloader
section

Private metadata (e.g. in EEPROM)

Absolute
pointer to
page 125 (at
0x3E80) +
offset 48

...

Page 125
0x3E80

...

0x0000 0x0080 0x0100 ... 0x4B00

Page 1 Page 2 Page 3 Page 150

... 0x3E80

Page 125

1 0 CALL

page offset type

...

125

Dest
page

1 0x7c JMP 2

PAGE 1

Page 87

0x0D80

Page 87

...

0x2B80

18/22

AVRAND: A Software-Based Defense Against Code Reuse Attacks for AVR Embedded Devices

AVRAND

AVRAND explained

1. Copy the private metadata to SRAM

SRAM Memory

Public metadata

1 0 CALL

page offset type

...

125

Dest
page

1 0x7c JMP 2

FLASH Memory

Page 1

Page 2

Page 3

...

Page 150

0x0000

0x0080

0x0100

0x4B00

FF FF FF FF ...

Bootloader
0x7000

...

Page 125
0x3E80

...

Page 87
0x2B80

Copy of private metadata

0x0000 0x0080 0x0100 ... 0x4B00

Page 1 Page 2 Page 3 Page 150

... 0x3E80

Page 125

0x0D80

Page 87

...

18/22

AVRAND: A Software-Based Defense Against Code Reuse Attacks for AVR Embedded Devices

AVRAND

AVRAND explained

2. Modify the copy by swapping pages randomly

SRAM Memory

Public metadata

1 0 CALL

page offset type

...

125

Dest
page

1 0x7c JMP 2

FLASH Memory

Page 1

Page 2

Page 3

...

Page 150

0x0000

0x0080

0x0100

0x4B00

FF FF FF FF ...

Bootloader
0x7000

...

0x3E80
...

Page 87
0x2B80

Copy of private metadata

0x0080PAGE 10x2B80 0x4B00 0x00AD ...

Page 1 Page 2 Page 3 Page 150

... 0x1E00

Page 125

0x0000

Page 87

...

Page 125

18/22

AVRAND: A Software-Based Defense Against Code Reuse Attacks for AVR Embedded Devices

AVRAND

AVRAND explained

3. Copy each pair of swapped pages to SRAM

SRAM Memory

Public metadata

1 0 CALL

page offset type

...

125

Dest
page

1 0x7c JMP 2

call 0x3eb0
movw r22, r12
ldi r24,0x09
ldi r25, 0x03

...

jmp 0x0080

FLASH Memory

Page 1

Page 2

Page 3

...

Page 150

0x0000

0x0080

0x0100

0x4B00

FF FF FF FF ...

Bootloader
0x7000

...

0x3E80
...

Page 87
0x2B80

Copy of private metadata

0x0080PAGE 10x2B80 0x4B00 0x00AD ...

Page 1 Page 2 Page 3 Page 150

... 0x1E00

Page 125

0x0000

Page 87

...

in r28, 0x3d
in r29, 0x3e
ldi r30, 0xB3

...

PAGE 1

PAGE 87
Page 125

18/22

AVRAND: A Software-Based Defense Against Code Reuse Attacks for AVR Embedded Devices

AVRAND

AVRAND explained

4. Update pointers on each page (using the metadata)

SRAM Memory

Public metadata

1 0 CALL

page offset type

...

125

Dest
page

1 0x7c JMP 2

Copy of private metadata

0x0080PAGE 10x2B80 0x4B00 0x00AD ...

Page 1 Page 2 Page 3 Page 150

... 0x1E00

Page 125

0x0000

Page 87

...

call 0x1e30
movw r22, r12
ldi r24,0x09
ldi r25, 0x03

...

jmp 0x0080

FLASH Memory

Page 1

Page 2

Page 3

...

Page 150

0x0000

0x0080

0x0100

0x4B00

FF FF FF FF ...

Bootloader
0x7000

...

0x3E80
...

Page 87
0x2B80

in r28, 0x3d
in r29, 0x3e
ldi r30, 0xB3

...

PAGE 1

PAGE 87
Page 125

18/22

AVRAND: A Software-Based Defense Against Code Reuse Attacks for AVR Embedded Devices

AVRAND

AVRAND explained

4. Update pointers on each page (using the metadata)

SRAM Memory

Public metadata

1 0 CALL

page offset type

...

125

Dest
page

1 0x7c JMP 2

Copy of private metadata

0x0080PAGE 10x2B80 0x4B00 0x00AD ...

Page 1 Page 2 Page 3 Page 150

... 0x1E00

Page 125

0x0000

Page 87

...

call 0x1e30
movw r22, r12
ldi r24,0x09
ldi r25, 0x03

...

jmp 0x4B00

FLASH Memory

Page 1

Page 2

Page 3

...

Page 150

0x0000

0x0080

0x0100

0x4B00

FF FF FF FF ...

Bootloader
0x7000

...

Page 125
0x3E80

...

Page 87
0x2B80

in r28, 0x3d
in r29, 0x3e
ldi r30, 0xB3

...

PAGE 1

PAGE 87

18/22

AVRAND: A Software-Based Defense Against Code Reuse Attacks for AVR Embedded Devices

AVRAND

AVRAND explained

5. Copy back to flash into each other’s previous position

SRAM Memory

Public metadata

1 0 CALL

page offset type

...

125

Dest
page

1 0x7c JMP 2

Copy of private metadata

0x0080PAGE 10x2B80 0x4B00 0x00AD ...

Page 1 Page 2 Page 3 Page 150

... 0x1E00

Page 125

0x0000

Page 87

...

call 0x1e30
movw r22, r12
ldi r24,0x09
ldi r25, 0x03

...

jmp 0x4B00

FLASH Memory

Page 87

Page 2

Page 3

...

Page 150

0x0000

0x0080

0x0100

0x4B00

FF FF FF FF ...

Bootloader
0x7000

...

Page 125
0x3E80

...

Page 1
0x2B80

in r28, 0x3d
in r29, 0x3e
ldi r30, 0xB3

...

PAGE 1

PAGE 87

18/22

AVRAND: A Software-Based Defense Against Code Reuse Attacks for AVR Embedded Devices

AVRAND

AVRAND explained

Modified layout

FLASH Memory

Page 87

Page 150

Page 45

...

Page 2

0x0000

0x0080

0x0100

0x4B00

FF FF FF FF ...

Bootloader
0x7000

Application
code

Unused

Bootloader
section

...

Page 1
0x2B80

...

Page 125
0x1E00

0x2b80: call 0x1e30
 movw r22, r12
 ldi r24,0x09
 ldi r25, 0x03

...

0x2bfc: jmp 0x4B00

Updated link to
page 2 (at 0x4B00)

Updated
pointer to
page 125 (at
0x1E00) +
offset 48

Public metadata

1 0 CALL

page offset type

...

125

Dest
page

1 0x7c JMP 2

Private metadata (e.g. in EEPROM)

0x0080PAGE 10x2B80 0x4B00 0x00AD ...

Page 1 Page 2 Page 3 Page 150

... 0x1E00

Page 125

0x0000

Page 87

...

19/22

AVRAND: A Software-Based Defense Against Code Reuse Attacks for AVR Embedded Devices

AVRAND

The bootloader itself must be protected from code
reuse attacks

Goal: Obfuscating the bootloader

Approach: the bootloader is stored encrypted, and is decrypted at
runtime.

Due to resource limitations, we use XOR-based encryption

Brute force prevention: Key is renewed during each re-randomization

Steps

1 Decrypt bootloader
2 Jump to randomization engine
3 Renew key
4 Encrypt bootloader
5 Jump to the beginning of the program (Entry Point)

20/22

AVRAND: A Software-Based Defense Against Code Reuse Attacks for AVR Embedded Devices

Conclusions

Outline

1 Introduction

2 Background: AVR and Arduino

3 AVR exploitation

4 AVRAND

5 Conclusions

21/22

AVRAND: A Software-Based Defense Against Code Reuse Attacks for AVR Embedded Devices

Conclusions

AVRAND goes one step further regarding security of
AVR-based embedded devices

AVR is an architecture used in many devices, but its security has not
been considered

A POC exploit shows how an Arduino chip can be compromised
using code reuse attacks

AVRAND hinders these attacks by means of memory layout
randomization

Strengths:

Software-based defense (independent of manufacturers, reduce costs)
Insignificant processing overhead (<1s)
High entropy (though depends on the number of pages)

Limitations:

Extra memory overhead (∼ 20%)
Reduction of device lifetime (limited flash cycles)

Eskerrik asko!

spastran@inf.uc3m.es

Prototypes available at:
http://www.seg.inf.uc3m.es/~spastran/avrand

22/22

http://www.seg.inf.uc3m.es/~spastran/avrand

1/2

AVRAND: A Software-Based Defense Against Code Reuse Attacks for AVR Embedded Devices

AVRAND: A Software-Based Defense Against
Code Reuse Attacks for AVR Embedded Devices

Sergio Pastrana, Juan Tapiador,
Guillermo Suarez-Tangil, Pedro Peris-Lopez

DIMVA 2016
San Sebastian. 7,8 July 2016

2/2

AVRAND: A Software-Based Defense Against Code Reuse Attacks for AVR Embedded Devices

Backup slide: AVRAND limitations

Randomization can occur in each device reset or periodically:

Frequency of randomizations: depends on the scenario
On each device reset (current approach)

3 Prevent code reuse attacks that crash the device
5 May be vulnerable to brute-force that clean the stack

Periodically, using timeouts

3 Brute force attacks are restricted to a limited period of time
5 Still, there is a vulnerable window
5 Flash memory has limited re-flashing cycles (e.g. 4.000 in Yun)

Limitation: Code size overhead

The preprocessing module increases code size by an avg. of 20%
Binaries are compiled with full optimization enabled (-O3)
All sample sketches from Arduino official site fit well in the Yun
device, though

	Introduction
	Background: AVR and Arduino
	AVR exploitation
	AVRAND
	Conclusions
	Appendix

