
AutoRand:	Automatic	
Keyword	Randomization	to	
Prevent	Injection	Attacks

Jeff	Perkins
MIT	CSAIL
July	2016

Jordan	Eikenberry,	Daniel	Willenson,	Stelios	Sidiriglou,	and	
Martin	Rinardof	MIT/CSAIL

Alessandro	Coglio of	Kestrel	Institute

SQL	Injection

• Code:
String.format ("select … where user='%s'and

passwd='%s'", user, passwd);

• Inputs:
user = John'or 1=1 –-
passwd = xx

• Executed	SQL:
select … where user='John'or 1=1 --'and
passwd='xx’

• Result:	Attacker	can	access	information	without	
knowing	the	password

Isn’t	this	a	Solved	Problem?

• Prepared	statements	are	easy	to	use	and	prevent	
injections
• But	attacks	still	occur
• Many	documented	attacks	since	May	(Muslim	Match	
dating	site,	Oracle	eBusiness	Suite,	Drupal	sites,	and	
many	more)
• Chinese	toy	company	VTech	lost	the	personal	data	of	
over	4	million	customers	last	November
• Sony	break-in	alone	cost	$170	million

• First	entry	in	the	CWE/SANS	top	25	list
• First	entry	in	the	OWASP	top	10	list

Coding	Solutions	are	Insufficient

• Require	source	code
• Require	programmer	time	and	understanding
• Can’t	be	utilized	by	end-users	of	the	code
• Require	Developers	to	be	error	free

AutoRand

• Operates	on	Java	byte-code	(no	source	required)
• Fully	automatic
• Applicable	to	large	real-world	programs
• Eliminates	injection	attacks	without	false	positives
• Low	overhead

AutoRand	Concept

• Similar	to	instruction	set	randomization
• Randomize	SQL	keywords	(and	operators/comment	
tokens)	in	the	program	and	the	SQL	grammar
• Check	SQL	commands	for	valid	(i.e.,	randomized)	
keywords
select<key> … where<key> user='John'
or 1=1 –-'and<key> passwd='xx'

• The	token	'or' is	not	a	valid	operator	and	the	
command	will	fail	the	check.		The	'--' comment	
token	is	also	invalid

Previous	Work

• SQLRand	introduced	manual	randomization
• Developer

• Finds	each	string	containing	SQL	keywords
• Runs	the	string	through	the	SQL	Rand	tool
• Copies	the	result	back	into	the	source

• SQLRand	proxy	checks	SQL	commands	for	validity
• Not	Automatic
• Randomized	keywords	may	flow	outside	of	SQL	
(files,	error	messages,	etc)
• Change	the	semantics	of	the	program
• Leak	the	random	key

Automation	is	Challenging

• SQL	keywords	may	appear	in	non-SQL	contexts

String button = "select"
fis = new FileInputStream (button + ".jpg");

• The	same	constant	may	be	used	in	both	SQL	and	non-
SQL	contexts
• AutoRand	must

• Add	the	key	to	all	SQL	keywords
• Propagate	the	key	across	string	operations
• Perform	all	string	methods	transparently	(as	if	the	key	was	
not	there)

• Hide	the	key	from	all	non-SQL	operations	(output,	filenames,	
environment	variables,	reflection,	etc.)

Augmented	Strings

• Additional	characters	(payload)	can	be	carried	in	
strings	transparently	to	the	program
• Payload	is	propagated	across	all	string	operations
• Payload	is	identified	by	a	complex	random	key
• Example	operations

• equal("select<key>", "select") == true
• concat ("or", " or<key>") == "or or<key>"
• len ("select<key>") == 6
• substr ("select<key> from", 8, 12) == "from"

Augmented	Strings	in	AutoRand

• Random	key	is	placed	after	each	SQL	keyword	(no	
other	payload	is	needed)
• Random	key	is	transparent	to	the	program's	normal	
operation
• SQL	processing	statements	check	for	valid	
(randomized)	keywords

Correctness

• Transparency
A	given	state	and	string	operation	are	transparent	if	
running	the	operation	in	the	state	produces	the	same	
result	as	running	the	original	operation	in	the	de-
randomized	state

• Propagation
A	given	operation	satisfies	propagation	if	each	keyword	
that	is	propagated	from	its	inputs	to	its	output	is	
consistently	randomized.

Transparency

𝑜𝑝 𝑆 =	𝑟'((𝑜𝑝* 𝑟 𝑆)

Where
• 𝑟 randomizes	strings	
• 𝑟'(derandomizes	strings
• 𝑜𝑝 𝑆 takes	a	string	and	yields	a	string	on	output
• 𝑜𝑝* 𝑆 AutoRand	replacement	operator	for	𝑜𝑝 𝑆

Transparency:	Operations	on	non-
Strings

• 𝑟'(is	a	nop	on	non-strings
• 𝑜𝑝* 𝑆 = 𝑜𝑝 𝑆

len ("select") == len("select<key>") == 6

• Same	results	on	same	inputs
substr("select *", 6)

= substr("select<key> *", 6) == " *"

Propagation

(𝐾-	∈ 𝑆)	∧ (𝐾	 ∈ 𝑜𝑝(𝑟'(𝑆))	↔	𝐾- 	∈ 𝑜𝑝′(𝑆)

Where
• 𝐾- is	a	randomized	keyword
• 𝐾 is	the	corresponding	keyword
• 𝑟 randomizes	strings	
• 𝑟'(derandomizes	strings
• 𝑜𝑝 𝑆 takes	a	string	and	yields	a	string	on	output
• 𝑜𝑝* 𝑆 AutoRand	replacement	operator	for	𝑜𝑝 𝑆

Randomization	of	Program	
Constants

• Tokenize	each	string	constant
• Replace	each	SQL	keyword	with	keyword<key>
• Key	is	10	upper/lower	case	letters/digits
• 62(4 possible	combinations	(~60	bits)
• Key	size	is	easily	configurable

Instrumentation	Approach

• Replace	calls	to	string	methods	with	calls	to	the	
AutoRand	library
• AutoRand	library	methods
• Static	call	taking	the	receiver	as	the	first	argument	(call	
stack	is	unchanged)
• Adjust	the	arguments	as	necessary	(e.g.,	derandomize)
• Call	the	original	method	or	re-implement.

• Instrument	both	the	application	and	the	Java	
libraries

SQL	API	Calls

• Intercept	calls	to	the	Java	SQL	interface
• Tokenize	the	SQL	statement
• All	tokens	that	are	SQL	keywords	are	checked	for	
the	random	key
• If	any	keywords	are	invalid,	an	error	is	thrown
• Otherwise,	all	of	the	random	keys	are	removed,	
and	the	SQL	command	executed	in	the	normal	
fashion

String	Manipulations

• Many	operations	need	to	be	adjusted	to	achieve	
transparency	and	propagation
• Operation	categories
• Observer	methods
• Complete	string	methods
• Partial	string	methods
• Character	methods
• Miscmethods	[see	paper	for	details]

Classification	by	Method

Category Methods
Complete <init>,	append,	appendCP,	concat, copyValueOf,	toString,	valueOf
Observer compareTo*,	contains,	contentEquals,	endsWith,	equals*,

hashcode,	indexOf,	isEmpty,	lastIndexOf,	length,	matches,	
offsetByCPs,	regionMatches,	startsWith

Partial delete*,	format,	insert,	replace*,	setCharAt,	toUpperCase,	trim
Character charAt, codePoint*,	getBytes,	getChars,	toCharArray
Miscellaneous Capacity,	ensureCapacity,	intern,	reverse, trimToSize

• String,	StringBuffer,	and	StringBuilder	calls
• Similar	calls	(indicated	with	*)	and	calls	that	differ	only	in	
their	arguments	are	grouped	together

• CodePoint	is	abbreviated	as	CP

Observer	Methods

• Do	not	create	or	modify	strings
• AutoRand	derandomizes	each	string	argument	and	
applies	the	original	methods
AutoRand.length (String s) {
return derandomize(s).length();

}

• Propagation	is	not	an	issue	(since	strings	are	not	
created	or	modified)
• Transparency	is	guaranteed	since	the	operation	
uses	the	derandomized	string

Complete	String	Methods

• Operate	on	entire	strings,	not	portions	of	them
• Entire	content	of	string	is	propagated	(including	
keys)	guaranteeing	propagation	and	transparency
• AutoRand	leaves	these	calls	unmodified

Partial	String	Methods

• Methods	that	operate	on	pieces	of	a	string
• Pieces	can	be	specified	by	indices	or	substring	
matches
• Matches	can	be	turned	into	indices

• AutoRand	supports	these	operations	by	mapping	
the	operation	from	the	original	(derandomized)	
string	to	the	randomized	string

Index	Map

• Map	from	character	indices	in	derandomized	string	
to	randomized	string
• Allows	any	operation	over	indices	to	be	applied	to	
the	randomized	string.
• Key	operations	are	substring,	delete	and	insert.
• All	string	operations	can	be	built	from	these

• Guarantees	that	keys	are	always	included	entirely	
or	not	at	all	(with	their	proceeding	character)

Index	Map	Example

Select␣*␣from␣

select<key>␣*␣from<key>␣

0→0 5→5 6→16 9→19 13→23 14→34

SubString

• Substring	from	start	index	(inclusive)	to	the	end	
index	(exclusive)
• Substring	(9,13)	→	Substring	(19,33)

Select␣*␣from␣

select<key>␣*␣from<key>␣

0→0 5→5 6→16 9→19 12→22 13→33

Insert	and	Delete

• Similar	to	substring
• Delete	from	start	(inclusive)	to	end	(exclusive)
• Insert	string	before	specified	index
• Inserts	cannot	occur	in	the	middle	of	a	key	or	
between	a	keyword	and	its	key.

Complex	Methods:	Example	
Implementation	of	Replace

replace (String s, String target, String repl) {
StringBuffer sb = new StringBuffer();
int start = 0;
int offset = s.indexOf(target);
while (offset != -1) {
sb.append (s.substr (start, offset);
sb.append (repl);
start = offset + target.length();
offset = s.indexOf (target, start);

}
sb.append (s.substr (start));

}

Character	Methods

• Convert	(portions	of)	strings	to	characters,	bytes	
code	points	or	arrays	thereof
• AutoRand	derandomizes	before	conversion	
preserving	transparency
• Since	the	result	is	not	a	string,	keys	are	not	
propagated.

Are	Character	Methods	a	
Problem?

• In	order	for	propagation	to	be	an	issue,	the	
following	must	occur
String(w/keys)	→	chars/bytes	→	String	→	SQL

• Seemingly	there	is	little	reason	to	manipulate	
program	constants	in	this	fashion
• We	evaluated	this	conservatively	in	our	evaluation		
programs
String(w/keys)	→	chars/bytes	→	String

Evaluation	Programs

Program Lines	of	
Code Description

Ant 256K		 A	Java	build	system
Barcode4J 28K		 A	barcode	generator
FindBugs 208K A	bug	 finder
FTPS 40K An	FTP	Server
HTMLCleaner 9K An HTML	formatter
JMeter 178K A	performance measurement	tool
PMD 110K A	source code	analyzer
SchemaSpy 16K A	database	inspecting	tool

Character	Method	Calls	by	
Application

Character	Call Applications Purpose
getBytes Ant	and	FTPS Prepare	for	stream	output
getChars JMeter	(one	class) XML	output
toCharArray JMeter	(one	class) XML	output
charAt 7 of	8	(12	call	sites) String	queries	
codePointAt none Similar	to	charAt

• Use	is	rare	in	general
• Output	is	not	an	issue	as	the	string	would	be	derandomized	for	output	anyway
• String	Queries

• charAt()	method	is	sometimes	used	to	process	a	string	char	by	char
• Strings	can	be	built	on	the	information	found
• In	each	case,	however,	strings	are	build	based	on	the	indices	found	 in	the	

original	string	and	not	from	the	individual	characters

Evaluation

• Independent	T&E	team	developed	tests
• Injected	Vulnerabilities
• Real	world	programs	(16K	to	256K	lines	of	code)
• SQL	vulnerabilities	added	to	various	locations	in	
program

• Smaller	focused	test	programs	with	vulnerabilities
• Tested	with	benign	and	attack	inputs
• Correct	behavior	with	benign	inputs	was	checked

Results	on	Injected	Vulnerabilities

• 13	attack	variants
• 1	to	43	unique	injection	locations	per	program
• MySQL,	Postgres,	Microsoft	SQLServer	databases
• 289	distinct	test	cases	(base	program	*	variant	*	
injection	location
• 2	benign	and	5	attack	inputs	for	each	test	case
• All	attacks	were	detected	with	no	false	positives	(or	
change	in	behavior)

Focused	Test	Results

• 17	test	programs	written	by	T&E	team.
• MySQL,	Hibernate	and	Postgres	databases
• Attack	types	included	string	tautology,	adding	
syntax	to	primitive	types,	and	adding	comments	to	
primitive	types.
• All	attacks	were	detected	with	no	false	positives	(or	
change	in	behavior)

Overhead

• Evaluation	Programs
• One	benign	test	case	from	each	program/variant	
combination
• 23	total	test	cases
• Overhead	ranged	from	0%	to	15%	with	an	average	of	
4.9%

• OpenCMS (content	management	system,	100K	
LOC)
• Site	content	stored	in	database
• Captured	and	replayed	1000	interactions
• 4.5%	overhead

Related	Work

• Manual	Prevention	Error-free	coding	practices
• SQLRand
• Parse	tree	structures
• Attacks	modify	query	structure

• Static	Analysis
• Static	data	flows

• Dynamic	taint	tracking	(WASP)

Java	Taint	Tracking:	WASP

• Tracks	trusted	(not	untrusted	data)
• Instruments	applications	to	use	its	MetaString
library
• Does	not	instrument	Java	libraries
• Loses	taint	on	any	string	created	in	the	Java	libraries
• Pattern,	Matcher,	Formatter,	etc

• Evaluated	only	on	smaller	applications	(17K	LOC	or	
less)
• 6.1%	overhead	with	no	coverage	of	the	Java	
libraries

AutoRand	can	Provide	Real-World	
Protection

• Fully	automatic
• Source	code	is	not	required
• Low	overhead	(4.9%)
• Verified	on	large	complex	real-world	programs

