
Towards Vulnerability Discovery Using Staged Program
Analysis

Bhargava Shastry1, Fabian Yamaguchi2,
Konrad Rieck2, Jean-Pierre Seifert1

1Security in Telecommunications, TU Berlin
2Institute of System Security, TU Braunschweig

1 / 21

Introduction

Fixing vulnerabilities early in systems code still relevant

Critical infrastructure, mass deployed embedded systems run C/C++
code

Memory corruption vulnerabilities
Variety of attacks: ROP, heap-spray

2 / 21

But, hasn’t static analysis been tried-and-tested?

Yes, and no

Yes, because

Frameworks like ITS4 to Coverity today use static analysis to find
vulnerabilities

No, because

C++ static analysis is relatively new
How to deal with

dynamic language features?
novel programming paradigms e.g. object-oriented programming

Bug reporting is crucial yet underappreciated

Bug reported but unpatched is still a bug

3 / 21

Why is C++ a big deal?

1 c l a s s foo {
2 p u b l i c :
3 i n t x ;
4 foo () {} // Con s t r u c t o r doesn ’ t i n i t i a l i z e ”x”
5 boo l i s Z e r o () ;
6 } ;

1 # i n c l u d e ” foo . h”
2
3 boo l foo : : i s Z e r o () {
4 i f (! x) // P o t e n t i a l l y u n i n i t i a l i z e d
5 r e t u r n t r u e ;
6 }

1 # i n c l u d e ” foo . h”
2
3 i n t main () {
4 foo f ; // C a l l s c o n s t r u c t o r (i n heade r)
5 i f (f . i s Z e r o ()) // C a l l s method (i n s ou r c e)
6 r e t u r n 0 ;
7 r e t u r n 1 ;
8 }

Bug manifests across source file boundary

4 / 21

Problem

Current open-source tools don’t flag bugs spanning source boundaries

Maybe, this isn’t as big an issue? Wrong!

Majority of Chromium, Firefox bugs span file boundaries

Same is true for other large codebases e.g. MySQL

5 / 21

Our proposal

Melange

Tackle multi-source-bugs by splitting analysis into two stages

Stage 1: Analyze individual source files building up list of potential
bugs

Stage 2: Validate findings of stage 1 by doing whole-program analysis

6 / 21

Overview

LLVM Builder

 WP
Analyzer

Mélange

Extended
Diagnostics

B
u
i
l
d

I
n
t
e
r
c
e
p
t
o
r

Native Compiler

Source
Analyzer

Library or
Executable

Bitcode
Analysis

Codebase

Candidate
Bug Reports

Native
Library or
Executable

7 / 21

How it works (1/2)

Analyze object implementations one-by-one

1 # i n c l u d e ” foo . h”
2
3 boo l foo : : i s Z e r o () {
4 i f (! x) // P o t e n t i a l l y u n i n i t i a l i z e d
5 r e t u r n t r u e ;
6 }

Analysis happens alongside native compilation

Flag potential bugs → foo :: x may be used uninitialized

8 / 21

How it works (2/2)

Validate list of potential bugs

1 # i n c l u d e ” foo . h”
2
3 i n t main () {
4 foo f ; // C a l l s c o n s t r u c t o r (i n heade r)
5 i f (f . i s Z e r o ()) // C a l l s method (i n s ou r c e)
6 r e t u r n 0 ;
7 r e t u r n 1 ;
8 }

Analysis happens post compilation and program linking

Output a bug report

9 / 21

Bug Report

1 // Source−l e v e l bug r e p o r t
2 // r epo r t−e6ed9c . html
3 . . .
4 Loca l Path to Bug : foo : : x−> ZN3foo6 i sZeroEv
5
6 Annotated Source Code
7 foo . cpp : 4 : 6 : warn ing : P o t e n t i a l l y u n i n i t i a l i z e d o b j e c t f i e l d
8 i f (! x)
9 ˆ

10 1 warn ing gene r a t ed .
11
12 // Whole−program bug r e p o r t
13 −−−−−−−−−− r e po r t−e6ed9c . html −−−−−−−−−
14 [+] Pa r s i ng bug r e p o r t r epo r t−e6ed9c . html
15 [+] Wr i t i ng q u e r i e s i n t o LLVM pas s heade r f i l e
16 [+] Recomp i l i ng LLVM pass
17 [+] Running LLVM BugRepor tAna lyze r pas s a g a i n s t main
18 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
19 Cand idate c a l l c h a i n i s :
20
21 foo : : i s Z e r o ()
22 main
23 −−−−−−−−−−−−−−−−−−−−−−−

10 / 21

Extensible

Analysis can be extended to multiple bug classes

Prototype supports the following bug classes

Type confusion
Garbage reads
Sign extension/conversion

Adding support for a bug class entails

Clang Static Analyzer plug-in, AND
LLVM optimizer plug-in

Analysis complexity orders of magnitude lesser than analyzed
programs

Melange spans ≈ 2.6 thousand LoC
Largest analysis target ≈ 14 million LoC

11 / 21

Evaluation

Effort required to use

Benchmark results

Effectiveness in finding bugs in large codebases

Runtime results

12 / 21

Usability

Melange is easy-to-use

Package with a production compiler toolchaing (Clang/LLVM)

Our analysis plugs into standard compiler

This means running our analysis is a matter of adding a few extra
flags

No knowledge of build system required
Analysis invocation transparent to user (developer)

13 / 21

Benchmark results

Our analysis can be applied to multiple bug classes

We have higher true positive rates compared to baseline

Overall false positive rate is also higher but manageable

Security analyst/Developer can wade through them without being
overwhelmed

14 / 21

Controlled evaluation

Going through PHP bug reports, type confusion seems to be
widespread

We wrote a type checking Melange plugin and found five known
exploitable vulnerabilities

Codebase CVE ID Bug ID

PHP CVE-2015-4147 69085
PHP CVE-2015-4148 69085
PHP CVE-2014-3515 67492
PHP Unassigned 73245
PHP Unassigned 69152

15 / 21

Uncontrolled evaluation

We analyzed Chromium, Firefox, MySQL releases from late 2015

We found 3 bugs out of which 2 were rediscovered (previously found
by fuzzing+dynamic analysis)

Consistently found a handful of interesting potential bugs

Codebase (MLoC) Bug reports True positives

Stage 1 Stage 2

Chromium (14) 2686 12 2

Firefox (5) 587 16 1

16 / 21

Performance (1/2)

Our analysis is much slower than native compilation time...

Total analysis time varies between 30-45x compilation time

Some codebases are particularly suited for staged analysis

Modular build system permits incremental analysis

17 / 21

Performance (2/2)

...But, it’s fast enough in practice

We rented an EC2 compute VM at ≈ 2 Euros/hour

Total analysis runtime ≈ 48 hours ≈ 100 Euros1

Firefox ≈ 31 hours ≈ 62 Euros
Chromium ≈ 13 hours ≈ 26 Euros
MySQL ≈ 4 hours ≈ 8 Euros

Ours is a research prototype → Lots of room for optimizations

1For first analysis only. Incremental analyses are cheaper

18 / 21

Take aways

Modern programming paradigms benefit from staged analysis

Static analysis is viable

Tools such as Melange

complement existing program testing techniques
Help find and fix bugs early

19 / 21

Source code

Melange checker source code at
https://github.com/bshastry/melange-checkers

Demo box at https://github.com/bshastry/vagrant-pallang

20 / 21

https://github.com/bshastry/melange-checkers
https://github.com/bshastry/vagrant-pallang

Acknowledgements

Thank you for your attention! Questions?

Our thanks to

Colleagues at SecT esp. Janis Danisevskis

Daniel Defreez, UC Davis

Grants from these projects

Enzevalos, NEMESYS, DEVIL

21 / 21

