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Introduction

e Fixing vulnerabilities early in systems code still relevant

o Critical infrastructure, mass deployed embedded systems run C/C++
code

e Memory corruption vulnerabilities
e Variety of attacks: ROP, heap-spray
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But, hasn't static analysis been tried-and-tested?

@ Yes, and no
@ Yes, because
o Frameworks like ITS4 to Coverity today use static analysis to find
vulnerabilities
@ No, because

o C++ static analysis is relatively new
e How to deal with

o dynamic language features?
@ novel programming paradigms e.g. object-oriented programming

e Bug reporting is crucial yet underappreciated
@ Bug reported but unpatched is still a bug



Why is C++ a big deal?

1  class foo {
2 public :
3 int x ;
4
5 bool isZero ();
6 }:
1 # include "foo.h"
2
3 bool foo :: isZero () {
4
5 return true ;
6 1
1 # include "foo.h"
2
3 int main () {
4 foo f; // Calls constructor (in header)
5
6 return 0;
7 return 1;
8 }
Bug manifests across source file boundary 'S
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Problem

Current open-source tools don't flag bugs spanning source boundaries

@ Maybe, this isn’t as big an issue? Wrong!
@ Majority of Chromium, Firefox bugs span file boundaries

@ Same is true for other large codebases e.g. MySQL
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Our proposal

Melange

@ Tackle multi-source-bugs by splitting analysis into two stages

@ Stage 1: Analyze individual source files building up list of potential
bugs
@ Stage 2: Validate findings of stage 1 by doing whole-program analysis
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Overview
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How it works (1/2)

@ Analyze object implementations one-by-one

# include "foo.h”

bool foo :: isZero () {

return true ;
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@ Analysis happens alongside native compilation
o Flag potential bugs — foo :: x may be used uninitialized
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How it works (2/2)

o Validate list of potential bugs

1 # include "foo.h"

2

3 int main () {

4 foo f; // Calls constructor (in header)
5

6 return 0;

7 return 1;

8

}

@ Analysis happens post compilation and program linking

e Output a bug report
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Bug Report
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// Source—level bug report
// report—e6ed9c.html

Local Path to Bug: foo::x—>_ZN3foobisZeroEv
Annotated Source Code
foo.cpp:4:6: warning: Potentially uninitialized object field

if (Ix)

1 warning generated.

// Whole—program bug report

report—e6ed9c. html
[+] Parsing bug report report—e6ed9c.html
[+] Writing queries into LLVM pass header file
[+] Recompiling LLVM pass
[+] Running LLVM BugReportAnalyzer pass against main

Candidate callchain is:

foo::isZero ()
main

System Security

10/21



Extensible

Analysis can be extended to multiple bug classes
@ Prototype supports the following bug classes
e Type confusion
o Garbage reads
e Sign extension/conversion
@ Adding support for a bug class entails
e Clang Static Analyzer plug-in, AND
o LLVM optimizer plug-in
@ Analysis complexity orders of magnitude lesser than analyzed
programs
e Melange spans ~ 2.6 thousand LoC
o Largest analysis target ~ 14 million LoC

’O

11/21

Institute of
System Security



Evaluation

Effort required to use
Benchmark results

Effectiveness in finding bugs in large codebases

Runtime results
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Usability

Melange is easy-to-use
e Package with a production compiler toolchaing (Clang/LLVM)

@ Our analysis plugs into standard compiler
@ This means running our analysis is a matter of adding a few extra
flags
o No knowledge of build system required
e Analysis invocation transparent to user (developer)
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Benchmark results
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@ Our analysis can be applied to multiple bug classes

@ We have higher true positive rates compared to baseline
@ Overall false positive rate is also higher but manageable
o Security analyst/Developer can wade through them without being

overwhelmed
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Controlled evaluation

@ Going through PHP bug reports, type confusion seems to be
widespread

@ We wrote a type checking Melange plugin and found five known
exploitable vulnerabilities

Codebase CVE ID Bug ID
PHP CVE-2015-4147 69085
PHP CVE-2015-4148 69085
PHP CVE-2014-3515 67492
PHP Unassigned 73245
PHP Unassigned 69152
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Uncontrolled evaluation

@ We analyzed Chromium, Firefox, MySQL releases from late 2015

e We found 3 bugs out of which 2 were rediscovered (previously found
by fuzzing+dynamic analysis)
@ Consistently found a handful of interesting potential bugs

Codebase (MLoC) Bug reports True positives
Stage 1 | Stage 2
Chromium (14) 2686 2

Firefox (5) 587 1
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Performance (1/2)

Our analysis is much slower than native compilation time...

o Total analysis time varies between 30-45x compilation time
@ Some codebases are particularly suited for staged analysis
o Modular build system permits incremental analysis
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Performance (2/2)

...But, it's fast enough in practice

@ We rented an EC2 compute VM at & 2 Euros/hour
e Total analysis runtime ~ 48 hours ~ 100 Euros!

o Firefox ~ 31 hours =~ 62 Euros
o Chromium =~ 13 hours ~ 26 Euros
o MySQL = 4 hours ~ 8 Euros

@ Ours is a research prototype — Lots of room for optimizations

For first analysis only. Incremental analyses are cheaper

‘Q

18/21

Institute of
System Security



Take aways

@ Modern programming paradigms benefit from staged analysis
@ Static analysis is viable

@ Tools such as Melange

e complement existing program testing techniques
e Help find and fix bugs early
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Source code

@ Melange checker source code at
https://github.com/bshastry/melange-checkers

@ Demo box at https://github.com/bshastry/vagrant-pallang
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https://github.com/bshastry/melange-checkers
https://github.com/bshastry/vagrant-pallang
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